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1. Compute the Laplace transform (and find an abscissa of convergence) of the shifted Heaviside
function Ha : [0, +∞) → R,

Ha(t) =
0, t ⩽ a,

1, t ⩾ a.

2. Compute the Laplace transforms of the modulated hyperbolic trigonometric functions:

f(t) = e−at cosh(ωt), g(t) = e−at sinh(ωt).

3. In each of the following cases, find a function f : [0, +∞) → C such that L[f ](z) = F (z).
You may use the Laplace transforms of the explicit examples we have computed in class or in
previous exercises.

(a) F (z) = 4z

z2 + 64,

(b) F (z) = z

(z + 1)(z + 2),

(c) F (z) = 1
z3 + z

.

(Hint: You might want to use some algebra to split the above expressions into sums of functions
for which you can recognise their Laplace transforms.)

4. Using the residue theorem, compute the inverse Laplace transform of the following functions:

(a) F (z) = 1
(z+1)2(z+2) ,

(b) F (z) = z2

(z2+1)2 .

5. Solve the 2nd order initial value problemy′′(x) + 2y′(x) + y(x) = f(x) for x > 0,

y(0) = 1, y′(0) = 1

in the following two cases:

(a) f(t) = 0,
(b) f(t) = t.
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6. Solve the 3rd order initial value problemy′′′(t) + y′(t) = te−t for t > 0,

y(0) = 0, y′(0) = 0, y′′(0) = 1.

Solutions
1. Since |Ha(t)| ⩽ 1 for all t, we have that 0 is an abscissa of convergence for L[Ha], since, for any

γ > 0 � +∞

0
|Ha(t)|e−γt dt ⩽

� +∞

0
e−γt dt = 1

γ
< +∞.

Thus, computing the Laplace transform of Ha(t), we have for any z with Re(z) > 0:

L{Ha(t)}(z) =
� ∞

0
Ha(t)e−zt dt.

Since Ha(t) = 0 for t < a and Ha(t) = 1 for t ⩾ a, the integral simplifies to:

L{Ha(t)}(z) =
� ∞

a

e−zt dt.

Compute the integral:
� ∞

a

e−zt dt =
[

e−zt

−z

]∞

a

= 0 −
(

e−az

−z

)
= e−az

z
.

Therefore, the Laplace transform is:

L{Ha(t)}(z) = e−az

z
.

2. Recall the definitions of the hyperbolic functions:

cosh(ωt) = eωt + e−ωt

2 , sinh(ωt) = eωt − e−ωt

2 .

Laplace transform of f(t) = e−at cosh(ωt):

f(t) = e−at · eωt + e−ωt

2 = 1
2
(
e−(a−ω)t + e−(a+ω)t

)
.

Using the Laplace transform of an exponential:

L{e−λt}(s) = 1
s + λ

, for Re(s + λ) > 0,
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we obtain:
L{f(t)}(s) = 1

2

( 1
s + a − ω

+ 1
s + a + ω

)
.

Combine the terms:
L{e−at cosh(ωt)}(s) = s + a

(s + a)2 − ω2 .

Laplace transform of g(t) = e−at sinh(ωt):

g(t) = e−at · eωt − e−ωt

2 = 1
2
(
e−(a−ω)t − e−(a+ω)t

)
.

Then:
L{g(t)}(s) = 1

2

( 1
s + a − ω

− 1
s + a + ω

)
,

Combine the terms:
L{e−at sinh(ωt)}(s) = ω

(s + a)2 − ω2 .

Final Answers:
L{e−at cosh(ωt)}(s) = s + a

(s + a)2 − ω2 ,

L{e−at sinh(ωt)}(s) = ω

(s + a)2 − ω2 ,

valid for Re(s + a) > |ω|.

3. In each of the following cases, find a function f : [0, +∞) → C such that L[f ](z) = F (z).

(a) F (z) = 4z

z2 + 64
Recall that the Laplace transform of cos(ωt) is:

L{cos(ωt)}(z) = z

z2 + ω2 , for Re(z) > 0.

This matches our case with ω = 8, so:

F (z) = 4 · z

z2 + 82 = L{4 cos(8t)}(z).

Answer: f(t) = 4 cos(8t).
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(b) F (z) = z

(z + 1)(z + 2)
Use partial fraction decomposition:

z

(z + 1)(z + 2) = A

z + 1 + B

z + 2 .

Multiply both sides by (z + 1)(z + 2):

z = A(z + 2) + B(z + 1).

Expanding:
z = Az + 2A + Bz + B = (A + B)z + (2A + B).

Match coefficients: A + B = 1,

2A + B = 0.
⇒ A = −1, B = 2.

So:
F (z) = −1

z + 1 + 2
z + 2 .

Use:
L{e−at}(z) = 1

z + a
.

Answer: f(t) = −e−t + 2e−2t.

(c) F (z) = 1
z3 + z

Factor the denominator:
F (z) = 1

z(z2 + 1) .

Use partial fractions:
1

z(z2 + 1) = A

z
+ Bz + C

z2 + 1 .

Multiply both sides by z(z2 + 1):

1 = A(z2 + 1) + (Bz + C)(z).

Expand:
1 = Az2 + A + Bz2 + Cz = (A + B)z2 + Cz + A.

Match coefficients: 
A + B = 0,

C = 0,

A = 1.

⇒ A = 1, B = −1, C = 0.
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So:
F (z) = 1

z
− z

z2 + 1 .

We recognize:
L[1](z) = 1

z
, L[cos(t)](z) = z

z2 + 1 .

Answer: f(t) = 1 − cos(t).

4. Using the residue theorem, compute the inverse Laplace transform of the following functions:

(a) F (z) = 1
(z + 1)2(z + 2)

Let f(t) = L−1{F (z)}(t). Note that the singularities of F are at z = −1, −2. Choosing
any γ ∈ R such that γ > max{−1, −2} (for instance, γ = 0 suffices), the formula for the
inverse Laplace function reads:

f(t) = 1
2πi

� γ+i∞

γ−i∞
ezt 1

(z + 1)2(z + 2) dz.

The integrand eztF (z) has poles at z = −1 (order 2) and z = −2 (simple pole). We
compute the residues of eztF (z).
At z = −2:

Resz=−2

(
ezt

(z + 1)2(z + 2)

)
= lim

z→−2

ezt

(z + 1)2 = e−2t

12 = e−2t.

At z = −1:

Resz=−1

(
ezt

(z + 1)2(z + 2)

)
= d

dz

[
ezt

z + 2

]
z=−1

=
[

tezt

z + 2 − ezt

(z + 2)2

]
z=−1

=
[

te−t

1 − e−t

12

]
= e−t(t − 1).

In order to compute the integral along Re(z) = γ, as we did in class, we close the loop
towards the left i.e. we close the line segment t → γ + it for t ∈ [−R, R] with the half
circle θ → Reiθ for θ ∈ [π

2 , 3π
2 ] and send R → +∞.1 This loop will contain all the poles of

etzF (z) and can be computed using the residue theorem. The integral over the half circle
will go to 0 as R → +∞, leaving us with:
� γ+i∞

γ−i∞
ezt 1

(z + 1)2(z + 2) dz = 2πi
(

Resz=−1

(
ezt

(z + 1)2(z + 2)

)
+Resz=−2

(
ezt

(z + 1)2(z + 2)

))
.

1As we saw in class, when computing a Laplace transform, we always close the loop by using a semi-circle in the
left direction, since, for t ⩾ 0, the complex function etz is bounded on half planes of the form Re(z) < γ.
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Adding the residues, we therefore obtain:

f(t) = e−2t + e−t(t − 1) = e−t(t − 1) + e−2t .

(b) F (z) = z2

(z2 + 1)2

The singularities of F are at z = ±i. Therefore, for any γ > Re(±i) = 0, we compute
using the formula for the inverse Laplace transform:

f(t) = L−1
{

z2

(z2 + 1)2

}
(t) = 1

2πi

� γ+i∞

γ−i∞
ezt · z2

(z2 + 1)2 dz (1)

The integrand has second-order poles at z = i and z = −i. Let us compute the associated
residues, setting

g(z) = eztz2

(z − i)2(z + i)2

∗ The residue at the pole of order 2 at z = i is:

Resz=i f(z) = d

dz

[
eztz2

(z + i)2

]
z=i

Let h(z) = eztz2

(z + i)2 . Then:

h′(z) = (2zezt + tz2ezt)(z + i)2 − 2(z + i)eztz2

(z + i)4

Evaluating at z = i, we therefore obtain

Resz=i g(z) = 4teit − 4ieit

16 = eit

4 (t − i).

∗ Similarly, we have
Resz=−i g(z) = e−it

4 (t + i).

In order to compute the integral (1) along Re(z) = γ, as we did before, we close the loop
towards the left i.e. we close the line segment t → γ + it for t ∈ [−R, R] with the half
circle θ → Reiθ for θ ∈ [π

2 , 3π
2 ] and send R → +∞. This loop will contain all the poles of

etzF (z) and can be computed using the residue theorem. The integral over the half circle
will go to 0 as R → +∞, leaving us with:

� γ+i∞

γ−i∞
ezt z2

(2+1)2 dz = 2πi
(

Resz=i (g(z)) + Resz=−i (g(z))
)

.
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Thus,

f(t) = L−1
{

z2

(z2 + 1)2

}
(t) =

[
eit

4 (t − i) + e−it

4 (t + i)
]

= Re
[

eit

2 (t − i)
]

Now use:
eit = cos t + i sin t

Then:

(t − i)(cos t + i sin t) = t cos t + it sin t − i cos t + sin t = (t cos t + sin t) + i(t sin t − cos t)

Take the real part:

f(t) = 1
2 (t cos t + sin t)

5. (a) f(t) = 0
Take the Laplace transform of both sides. Let Y (s) = L{y(t)}(s). Use the Laplace
transforms:

L{y′′} = s2Y (s) − sy(0) − y′(0), L{y′} = sY (s) − y(0), L{y} = Y (s)

Substitute into the ODE:

s2Y (s) − s − 1 + 2(sY (s) − 1) + Y (s) = 0

(s2 + 2s + 1)Y (s) − (s + 2 + 1) = 0 ⇒ (s + 1)2Y (s) = s + 3

So:
Y (s) = s + 3

(s + 1)2

Now simplify:

Y (s) = s + 1 + 2
(s + 1)2 = s + 1

(s + 1)2 + 2
(s + 1)2 = 1

s + 1 + 2
(s + 1)2

Now take the inverse Laplace transform:

y(t) = L−1
{ 1

s + 1

}
(t) + 2 · L−1

{
1

(s + 1)2

}
(t) = e−t + 2te−t
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(b) f(t) = t

Take Laplace transform of both sides:

(s2 + 2s + 1)Y (s) = L{t}(s) + (s + 3)

Recall:
L{t} = 1

s2 , so: (s + 1)2Y (s) = 1
s2 + s + 3

Thus:
Y (s) = 1

s2(s + 1)2 + s + 3
(s + 1)2

We already found:
s + 3

(s + 1)2 = 1
s + 1 + 2

(s + 1)2

Now compute inverse Laplace of:
1

s2(s + 1)2

Use known inverse (from tables or convolution), or use partial fractions:
Let:

1
s2(s + 1)2 = A

s
+ B

s2 + C

s + 1 + D

(s + 1)2

Multiply both sides by s2(s + 1)2, and solve for constants:

1
s2(s + 1)2 = −2

s
+ 1

s2 + 2
s + 1 + 1

(z + 1)2 .

Final inverse transform is known:

L−1
{

1
s2(s + 1)2

}
(t) = −2 + t + (2 + t)e−t

Thus:
y(t) =

[
−2 + t + (2 + t)e−t

]
+ e−t + 2te−t == −2 + t + 3(1 + t)e−t

6. Take the Laplace transform of both sides. Let Y (s) = L{y(t)}. Recall the transforms:

L{y′(t)} = sY (s)−y(0), L{y′′(t)} = s2Y (s)−sy(0)−y′(0), L{y′′′(t)} = s3Y (s)−s2y(0)−sy′(0)−y′′(0)

Substitute into the equation:

s3Y (s) − s2 · 0 − s · 0 − 1 + sY (s) − 0 = L{te−t} ⇒ (s3 + s)Y (s) − 1 = 1
(s + 1)2
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Solve for Y (s):

(s3 + s)Y (s) = 1
(s + 1)2 + 1 ⇒ Y (s) = 1

(s + 1)2 · s(s2 + 1) + 1
s(s2 + 1)

We now compute the inverse Laplace transform of both terms.

Second term:
L−1

{
1

s(s2 + 1)

}
(t) =

� t

0
sin(τ) dτ = 1 − cos t

First term: Let us define:
f(t) = te−t, L{f(t)} = 1

(s + 1)2

g(t) = 1 − cos t, L{g(t)} = 1
s(s2 + 1)

Then, using the convolution theorem:

L−1
{

1
(s + 1)2 · s(s2 + 1)

}
(t) =

� t

0
f(t−τ)g(τ) dτ =

� t

0
(t−τ)e−(t−τ)(1−cos τ) dτ = −1

2(t+2)e−t−1
2(sin(t)−2)

Therefore,

y(t) = −1
2(t + 2)e−t − 1

2 sin(t) − cos(t) + 2
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